콘텐츠로 이동

ES: Expressions and statements

Expressions and statements are the lowest and most direct way of expressing actions and computation. Declarations in local scopes are statements.

For naming, commenting, and indentation rules, see NL: Naming and layout.

General rules:

Declaration rules:

Expression rules:

Statement rules:

Arithmetic rules:

ES.1: Prefer the standard library to other libraries and to "handcrafted code"

Reason

Code using a library can be much easier to write than code working directly with language features, much shorter, tend to be of a higher level of abstraction, and the library code is presumably already tested. The ISO C++ Standard Library is among the most widely known and best tested libraries. It is available as part of all C++ implementations.

Example

auto sum = accumulate(begin(a), end(a), 0.0);   // good

a range version of accumulate would be even better:

auto sum = accumulate(v, 0.0); // better

but don't hand-code a well-known algorithm:

int max = v.size();   // bad: verbose, purpose unstated
double sum = 0.0;
for (int i = 0; i < max; ++i)
    sum = sum + v[i];

Exception

Large parts of the standard library rely on dynamic allocation (free store). These parts, notably the containers but not the algorithms, are unsuitable for some hard-real-time and embedded applications. In such cases, consider providing/using similar facilities, e.g., a standard-library-style container implemented using a pool allocator.

Enforcement

Not easy. ??? Look for messy loops, nested loops, long functions, absence of function calls, lack of use of built-in types. Cyclomatic complexity?

ES.2: Prefer suitable abstractions to direct use of language features

Reason

A "suitable abstraction" (e.g., library or class) is closer to the application concepts than the bare language, leads to shorter and clearer code, and is likely to be better tested.

Example

vector<string> read1(istream& is)   // good
{
    vector<string> res;
    for (string s; is >> s;)
        res.push_back(s);
    return res;
}

The more traditional and lower-level near-equivalent is longer, messier, harder to get right, and most likely slower:

char** read2(istream& is, int maxelem, int maxstring, int* nread)   // bad: verbose and incomplete
{
    auto res = new char*[maxelem];
    int elemcount = 0;
    while (is && elemcount < maxelem) {
        auto s = new char[maxstring];
        is.read(s, maxstring);
        res[elemcount++] = s;
    }
    *nread = elemcount;
    return res;
}

Once the checking for overflow and error handling has been added that code gets quite messy, and there is the problem remembering to delete the returned pointer and the C-style strings that array contains.

Enforcement

Not easy. ??? Look for messy loops, nested loops, long functions, absence of function calls, lack of use of built-in types. Cyclomatic complexity?

ES.3: Don't repeat yourself, avoid redundant code

Duplicated or otherwise redundant code obscures intent, makes it harder to understand the logic, and makes maintenance harder, among other problems. It often arises from cut-and-paste programming.

Use standard algorithms where appropriate, instead of writing some own implementation.

See also: SL.1, ES.11

Example

void func(bool flag)    // Bad, duplicated code.
{
    if (flag) {
        x();
        y();
    }
    else {
        x();
        z();
    }
}

void func(bool flag)    // Better, no duplicated code.
{
    x();

    if (flag)
        y();
    else
        z();
}

Enforcement

  • Use a static analyzer. It will catch at least some redundant constructs.
  • Code review